Taxonomy-Aware Multi-Hop Reasoning Networks for Sequential Recommendation

Abstract

In this paper, we focus on the task of sequential recommendation using taxonomy data. Existing sequential recommendation methods usually adopt a single vectorized representation for learning the overall sequential characteristics, and have a limited modeling capacity in capturing multi-grained sequential characteristics over context information. Besides, existing methods often directly take the feature vectors derived from context information as auxiliary input, which is difficult to fully exploit the structural patterns in context information for learning preference representations. To address above issues, we propose a novel Taxonomy-aware Multi-hop Reasoning Network, named TMRN, which integrates a basic GRU-based sequential recommender with an elaborately designed memory-based multi-hop reasoning architecture. For enhancing the reasoning capacity, we incorporate taxonomy data as structural knowledge to instruct the learning of our model. We associate the learning of user preference in sequential recommendation with the category hierarchy in the taxonomy. Given a user, for each recommendation, we learn a unique preference representation corresponding to each level in the taxonomy based on her/his overall sequential preference. In this way, the overall, coarse-grained preference representation can be gradually refined in different levels from general to specific, and we are able to capture the evolvement and refinement of user preference over the taxonomy, which makes our model highly explainable. Extensive experiments show that our proposed model is superior to state-of-the-art baselines in terms of both effectiveness and interpretability.

Publication
In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining
Jin Huang
Jin Huang
PhD student

My research interest focuses on trustworthy intelligent information systems, with a focus on unbiasedness, fairness, robustness, and explainability.