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ABSTRACT

In this paper, we focus on the task of sequential recommendation
using taxonomy data. Existing sequential recommendation meth-

ods usually adopt a single vectorized representation for learning

the overall sequential characteristics, and have a limited modeling

capacity in capturing multi-grained sequential characteristics over

context information. Besides, existing methods often directly take

the feature vectors derived from context information as auxiliary

input, which is difficult to fully exploit the structural patterns in

context information for learning preference representations.

To address above issues, we propose a novel Taxonomy-aware
Multi-hop Reasoning Network, named TMRN, which integrates a

basic GRU-based sequential recommender with an elaborately de-

signed memory-based multi-hop reasoning architecture. For en-

hancing the reasoning capacity, we incorporate taxonomy data as

structural knowledge to instruct the learning of our model. We asso-

ciate the learning of user preference in sequential recommendation

with the category hierarchy in the taxonomy. Given a user, for each

recommendation, we learn a unique preference representation cor-

responding to each level in the taxonomy based on her/his overall

sequential preference. In this way, the overall, coarse-grained pref-

erence representation can be gradually refined in different levels

from general to specific, and we are able to capture the evolvement

and refinement of user preference over the taxonomy, which makes

our model highly explainable. Extensive experiments show that our

proposed model is superior to state-of-the-art baselines in terms of

both effectiveness and interpretability.
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1 INTRODUCTION

Nowadays, recommender systems have become increasingly im-

portant in facilitating the selection of online resources, i.e., items.

Instead of seeking static recommendation results at a time, it is

usually more common to predict the successive item(s) that a user

is likely to interact with given her/his previous interaction records

over time [33], called sequential recommendation. It has been widely

recognized that human behavior is very complex and the accurate

prediction for sequential actions is a challenging task [20]. For

tackling this task, various approaches have been proposed in the lit-

erature [10, 13, 33, 40], including the recent progress with recurrent

neural networks (RNN) [13, 21, 45].

With the rapid growth of web content, many studies further

leverage rich context information for improving the performance

of sequential recommendation [14, 18, 24]. Although these context-

aware methods have achieved performance improvement to some

extent, there are two major problems for the utilization of context

information in sequential recommendation. On one hand, existing

studies usually adopt a single vectorized representation for learning

the overall sequential characteristics reflected in the dependency

among adjacent user-item interactions. Hence, the learned prefer-

ence representation has a limited modeling capacity in capturing

multi-grained sequential characteristics corresponding to varying

context information. For example, it is difficult to directly infer the

sequential characteristics from user behaviors w.r.t. a specific cate-
gory and its sub-categories using previous methods. On the other

hand, existing sequential recommendation methods directly take

the feature vectors (e.g., a single vector [13] or multiple attribute-

based vectors [18]) derived from context data as the auxiliary input.

Such a kind of strategy makes it still difficult to exploit the struc-

tural patterns in context information (e.g., the data hierarchy) to
enhance the preference representations. Overall, there is a lack
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Recently, memory-based neural networks have been widely used

in providing the long-term data storage and enhancing the complex

reasoning capacity [1, 7, 8, 44]. By endowing memory networks

(MN) [44] with more powerful reasoning capacity, many effective

variants have been developed for different applications [2, 23, 35].

Especially, our method is related to RUM [2] in which memory

networks have been first applied for sequential recommendation.

However, RUM does not support the multi-hop reasoning, and it

can not directly utilize hierarchical knowledge information.

To our knowledge, our proposed TMRNmodel is the first sequen-

tial recommender which associates the learning of multi-grained

user preference with the category hierarchy in the taxonomy. Our

model can characterize both overall and fine-grained sequential

characteristics for modeling user preference. Besides, it is able to

model the evolvement and refinement of user preference over the

taxonomy, which largely enhances the reasoning capacity and the

model interpretability.

3 PRELIMINARIES

We detail the task that we address and describe the GRU-based

sequential recommender that our model is built on.

3.1 Problem Formulation

A recommender system mainly focuses on the interactions between

a user setU and an item set I. The interaction sequence of a user

u ∈ U consists of ordered interaction records generated by u, i.e.,
{i1, · · · , it , · · · , inu }, where it is the item that u interacted with at

time t and nu is the number of interaction records. Following [33],

the relative time index is used to number interaction records.

Besides, we assume that an item taxonomy C is also given, which

is organized in a tree-structured hierarchy. In C, a non-leaf node

corresponds to a category label and a leaf node corresponds to

an item. All the non-leaf nodes form a category hierarchy, where

a higher node corresponds to a more abstractive category. Each

item is associated with a category path from the root to the item

itself. Furthermore, we assume all the category paths have the

same length, denoted by K . Given item i , the associated categories

through the path from the root to i can be given as c1

i → · · · → cKi ,

where each node c
j
i is the only parent node of c

j+1

i in the hierarchy.

Given the example in Figure 1, the product of “steering wheel cover"
corresponds to the category path “Automotive→ Interior Accessories
→ Covers". It can be seen that such a taxonomy provides valuable

knowledge information about the items, and forms a hierarchical

organization of the entire item set in different levels.

Based on the above notations, we define the task of sequential
recommendation as follows. Given the item taxonomy C and the

interaction sequence {i1, · · · , it , · · · , inu } of useru, we aim to infer

the item that user u will interact with at time nu + 1.

3.2 GRU-based Sequential Recommender

Recently, recurrent neural networks (RNNs) have been widely ap-

plied to sequential recommendation for excellent sequence model-

ing capacity, especially the two improved variants of the long-short

term memory (LSTM) networks [15] and the gated recurrent unit

(GRU) networks [3]. Considering the simplicity and robustness, we

employ a GRU network as the basis of our model in this paper.

For each user u, we use {i1, · · · , it } to denote an interaction

sequence between u and the items that u has interacted with so far.

At time t , givenhut−1
calculated at t−1, the GRU-based recommender

calculates a hidden state vector hut ∈ R
LH

as follows:

hut = GRU(hut−1
,qit ;Φ), (1)

where GRU(·) is the GRU unit [3], qit ∈ R
LI

is the embedding

vector for item it (item embedding for short), and Φ denotes all

the related parameters of GRU networks. The GRU network can

encode the past interaction sequence of u into a hidden vector hut ,
modeling the sequential characteristics of u’s preference at time t .
Hence, we call hut the overall sequential preference representation of

user u.
Given user u, at time t , for a candidate item i , the GRU-based

recommender generates a ranking score by calculating an inner

product between the representations of u and i , formally we have

su,i,t = hut
⊤ · qi . According to these ranking scores, the recom-

mender ranks candidate items descendingly, and recommends items

with high scores.

4 METHOD

In this section, we present the proposed Taxonomy-aware Multi-hop
Reasoning Network (TMRN) for sequential recommendation.

4.1 Overview

In Fig 2(a), we present an overview of the proposed model. The

main contribution lies in the taxonomy-aware multi-hop reason-

ing mechanism. In our model, we integrate the basic GRU-based

sequential recommender (See §3.2) with a novel hierarchical multi-

hop memory network. Besides the overall sequential preference

representation, TMRN hierarchically learns multiple fine-grained

preference representations corresponding to different levels in the

item taxonomy, which can capture the evolvement and refinement

of user preference during the item selection process.

We detail TMRN in an asymptotical way. In §4.2, we introduce the

multi-hop reasoning architecture, whereas in §4.3 we detail the use

of taxonomy information for enhancing the reasoning mechanism.

§4.4 provides the application of the proposed model in sequential

recommendation.

4.2 The General Multi-hop Reasoning

Architecture

For constructing an effective reasoning network, we adopt memory-

augmented neural networks, since they have been shown to be

effective in performing complex reasoning tasks with the enhanced

learning capacity [23, 27]. Next, we present a novel multi-hop rea-

soning architecture for sequential recommendation.

4.2.1 The memory component. The proposed reasoning network

sets up an array of slots as long-term memory for storing informa-

tion. We assume K hops exist in our model. For a user, instead

of setting up a single memory matrix, we incorporate K user-

specific memory matrices, which enable the learning of preference

representations for multiple hops. Specially, for each user u, let
Mu
k = [m

u
k,1;mu

m,2; · · · ;mu
k,A] denote the corresponding memory

matrix for the k-th hop, where the subscript of k indicates the hop
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information. Recall that an item i is associated with a path of K
category labels c1

i → c2

i → · · · → cKi . In the path, each child node

should be similar to its parent node, and such node similarity is

transitive. Hence, we generate an edge for each node pair in the

path. We repeat the above process for the paths from all the items.

The weight of an edge is set to the occurrence frequency of the

corresponding node pair. Then, we apply the widely used network

embedding model LINE [36] to learn a distributed vector represen-

tation for each category node. We use the bold font cki ∈ R
LC

to

denote the learned embedding for cki . Note that we do not incor-

porate item information for the learning of category embeddings,

since the major aim is to encode the hierarchical category seman-

tics. As will be shown later, we will combine the item embedding

with its associated category embeddings in use. There can be other

ways for embedding hierarchical data. Here we adopt the method

in [36] for its simplicity and effectiveness in our work (See §6.2.3

for experimental discussions).

4.3.3 Aligning the reasoning with the category hierarchy. Our key
idea is to align each hop in the reasoning network with a corre-

sponding level in the taxonomy. For achieving this, we specify the

setting of memory content and instantiate the Write operation in

the general reasoning architecture (See §4.2).

A major benefit of memory networks is that they can exactly

store information in a longer period. Hence, in [2], the authors

propose to fill the memory matrix with A latest items that u has

interacted with for sequential recommendation, which is expected

to yield a better performance than RNN based models. In our case,

we have additional taxonomy data for utilization. At time t , the
a-th memory vector inMu

k for the k-th hop is set as follows

mu
k,a ← qit−a+1

⊕ ckit−a+1

, (7)

where ckit−a+1

is the embedding of the corresponding category node

in the k-th level of the taxonomy for item it−a+1, so we have LM =
LI + LC . With the concatenation, our memory matrix contains the

information of the item itself and the associated category on a level.

Another alignment lies in the Write operation. When a new

item it comes, we update the memory content at the k-th hop with

its associated category embedding

{Mu
k }

new ←Write({Mu
k }

old ,qit ⊕ c
k
it ), (8)

where the write operation is implemented by a first-in-first-out

mechanism according to [2, 18, 35]

[q̃it−1
; · · · ; q̃it−A+1

; q̃it−A︸︷︷︸
removed

] → [ q̃it︸︷︷︸
added

; q̃it−1
; · · · ; q̃it−A+1

], (9)

where q̃i = qi ⊕ cki and the embedding of the earliest item it−A is

removed and the embedding of the new item it is added inMu
k . For

different memory matrices in {Mu
k }

K
k=1

, we update them with the

corresponding category embedding in {ckit }
K
k=1

. Note that when the

memory is not full, the item is directly added without replacement.

See Fig. 2(b) for the illustration of the memory layout and update.

4.3.4 Summary. We implement the alignment by associating the

reasoning procedure with the corresponding category embedding

in different hops. In this way, the k-hop reasoning is aligned with

the k-level hierarchy from the taxonomy. With {vut,k }
K
k=1

, we can

capture the sequential characteristics of user preference in different

granularities. Note that such a learning architecture follows a hier-

archical way, so we can trace the evolvement and refinement of user

preference over the hierarchy. Eventually, we calculate u’s multi-

hop preference representation by summing up these K preference

representations,

vut = v
u
t,1 ⊕ v

u
t,2 ⊕ · · · ⊕ v

u
t,K . (10)

In contrast with hut that emphasizes the sequential preference,vut
emphasizes the multi-hop preference at the item selection process.

4.4 Sequential Recommendation

The working procedure of our reasoning network can be given

as follows. At time t , we first use the GRU-based recommender

(Eq. 1) to learn the overall sequential representation hut . Then, we
employ hut as the initial query to perform the multi-hop reasoning

over the memory matrices. At the k-th hop, we obtain a new pref-

erence representationvut,k corresponding to the k-th level in the

taxonomy using Eq. 2. AfterK hops, we obtain a set ofK preference

representations {vut,k }
K
k=1

, and derive the combined multi-hop pref-

erence representationvut using Eq. 10. Since hut andvut capture the

characteristics of user preference in different aspects, we further

concatenate hut andvut into a vector put = h
u
t ⊕v

u
t as the final rep-

resentation. We utilize an inner product between the transformed

representations of u and i to calculate the ranking score:

su,i,t = MLP(put )
⊤ ·MLP(q̌i ), (11)

whereMLP(·) is used to map vectors into the same dimensionality,

and q̌i = qi ⊕ ci
1
· · · ⊕ ciK is the item representation combined with

all associated category embeddings. Overall, the process of feeding

the overall sequential user representation to memory component

performs like a decoding procedure, where we can gradually distill

more fine-grained preference representations with the instruction

of the hierarchical knowledge information from the taxonomy.

To learn the model parameters, we use a pairwise loss function:

L =
∑
u ∈U

nu∑
t=1

∑
j ∈I−u

logσ (su,it ,t − su, j,t )), (12)

where nu is the length of interaction sequence of u in the training

set, I−u is a small set of sampled items that useru has not interacted

with, and σ (·) is the sigmoid function. For each item i we pre-train
the item embedding qi using the classic BPR model [32].

In contrast with existing sequential recommendation methods,

our model has the following merits: (1) our reasoning network

TMRN is able to capture both overall and fined-grained sequen-

tial characteristics in user preference; (2) we align the reasoning

process with the category hierarchy, which is able to characterize

the evolvement and refinement of user preference w.r.t. different
category levels; (3) our model is endowed with both the excellent

reasoning capacity from memory-based neural networks and the

interpretability from external structured knowledge.
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5 EXPERIMENTAL SETUP

In this section, we set up the experiments with the datasets, evalua-

tion metrics and baselines.

5.1 Datasets

In our experiments, we collect three real-world datasets from three

e-commerce portals respectively, i.e., Amazon music [9], JD [39]

and Last.fm [34]. Additionally, we collect or construct triple-level

hierarchical category labels from these three portals. Categories in

Amazon dataset containmusic style, sub-style, and artist; categories
in JD dataset contain category, sub-category, and brand; whereas
categories in Last.fm dataset only contain artist and album. To

extend the concept hierarchy for Last.fm, we use the clusters of

the artists as a new kind of attribute labels (called music style). To
cluster artists, we first represent each artist by a one-hot vector

consisting of user ratings, and then group the artists according to

the similarities between their vectors. We treat each cluster as a

music style, and have 100 music style labels in total. Following [10,

33], we filter out unpopular items and inactive users with fewer

than k records. We set k = 5 in Amazon music dataset and k = 10

in other two datasets. We summarize the detailed statistics of the

datasets in Table 1. Our datasets and code are shared online via the

link https://github.com/RUCDM/TMRN.

Table 1: Statistics of our datasets. #L1, #L2, and #L3 indicate

the number of first-level, second-level and third-level cate-

gory labels respectively.

Datasets #Interactions #Items #Users #L1 #L2 #L3

Last.fm 204,438 30,679 7,713 100 3,662 10,292

JD 1,644,953 121,976 50,000 167 1,012 10,845

Amazon music 74,786 16,086 4,528 91 130 2,655

5.2 Task Settings

Following the previous settings [11, 32, 33], we consider two task

settings for evaluation, namely next-item recommendation and

multi-item recommendation. For next-item recommendation, we

hold out the last item of the interaction sequence as the test data;

for multi-item recommendation, we hold out the last 20% of the

interaction sequence as the test data. Since the item set is very

large, it is time-consuming to enumerate all the items as candidates.

Hence, following [11], we sample negative cases for each positive

record (user-item interaction) in the test set. We pair every positive

user record with 100 sampled items that the user has not interacted

with, called negative items. To sample reliable and representative

negative items, 50 items are sampled according to the popularity,

while the rest 50 items are sampled randomly.

5.3 Comparisons

We propose a novel Taxonomy-aware Multi-hop Reasoning Network
(TMRN) for sequential recommendation, named TMRN. We also

implement a variant by removing the external taxonomy infor-

mation from TMRN, namedMRN. MRN follows all the details of

TMRN except it removes all the category embeddings, where mul-

tiple memory matrices degenerate into a shared memory matrix.

Our baselines include related methods on general and sequential

recommendation with or without context data:

(1) BPR [32] is a latent factor model with implicit feedback,

which optimizes a pairwise ranking loss function;

(2) NCF [11] is a neural collaborative filtering method utilizing

a neural architecture to replace the inner product;

(3) FM [31] refers to a generic factorization machine and en-

hanced with the hierarchical category information;

(4) FPMC [33] is a hybrid model to capture both sequential ef-

fects and general interests of users for sequential recommendation;

(5) TF [18] proposes to combine the taxonomies and latent factor

models to improve the sequential recommendation;

(6) RUM [2] employs memory networks for implementing a

sequential recommender.

(7) GRU [13] is a GRU-based sequential recommender with

session-parallel mini-batch training.

(8) GRUF [14] proposes to concatenate both item vector and

feature vector as the input of GRU networks, which incorporates

auxiliary features to improve sequential recommendation.

5.4 Evaluation Metrics and Parameter Settings

To assess whether our method can improve the sequential rec-

ommendation, we adopt a variety of evaluation metrics following

previous work [2, 13, 33]: Precision (P), Recall (R), Mean Average

Precision (MAP), Mean Reciprocal Rank (MRR), and Hit Ratio (HR).

To set the parameters in our experiments, we either follow the

reported optimal parameter settings or optimize each model sepa-

rately using the validation set of 10% training data. For our model,

we adopt a one-layer GRU network, the hidden layer size LH is set

to 256, the item embedding size LI is set to 256, and the hierarchy

embedding size LC is set to 256. For memory matrices,A is set to 20,

and LM = LI +LC . All the MLP components are of one hidden layer

with the tanh activation function. We pre-train item embeddings

and hierarchical category embeddings. We use SGD to optimize

the parameters when we train models. We will discuss the effect of

parameter settings in §6.2.

6 RESULTS AND ANALYSIS

In this section, we present our experimental results and analysis.

6.1 Overall Performance

Wefirst examine the performance of our methods for the two recom-

mendation tasks. Table 2 lists the performance of all methods using

different evaluation metrics. We can find that non-sequential recom-

mendation baselines, i.e., BPR and NCF, overall perform worse than

knowledge-aware or sequential recommendation methods. Among

all sequential recommendation baselines, FPMC performs worst.

The method TF can be considered as an enhanced version of FPMC

by incorporating taxonomy data for sequential recommendation.

As two competitive methods, RUM utilizes the memory network,

and GRU adopts the RNN-based architecture, both of which give

good performance in all three datasets. Furthermore, GRUF with

additional features achieves an obvious increase over GRU on most

of evaluation metrics.
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Table 2: Performance comparison of different methods on next-item and multi-item recommendation. “†” indicates the im-

provement of the TMRN over the baseline is significant at the level of 0.01.We also report the improvement ratio of our TMRN

model over the best performance of all the baselines for each dataset in parentheses.

Datasets Methods

Next-Item Recommendation Multi-Item Recommendation

P@10 R@10 MAP MRR HR@10 P@10 R@10 MAP MRR HR@10

Last.fm

BPR 0.051
†

0.514
†

0.260
†

0.260
†

0.514
†

0.081
†

0.215
†

0.155
†

0.224
†

0.419
†

NCF 0.060
†

0.602
†

0.436
†

0.436
†

0.602
†

0.129
†

0.342
†

0.289
†

0.435
†

0.617
†

FM 0.065
†

0.658
†

0.352
†

0.352
†

0.658
†

0.108
†

0.307
†

0.197
†

0.290
†

0.577
†

FPMC 0.056
†

0.558
†

0.382
†

0.382
†

0.558
†

0.114
†

0.307
†

0.252
†

0.365
†

0.530
†

TF 0.065
†

0.648
†

0.388
†

0.388
†

0.648
†

0.119
†

0.329
†

0.235
†

0.308
†

0.548
†

RUM 0.065
†

0.646
†

0.416
†

0.416
†

0.646
†

0.130
†

0.344
†

0.259
†

0.379
†

0.616
†

GRU 0.060
†

0.598
†

0.457
†

0.457
†

0.598
†

0.116
†

0.308
†

0.258
†

0.445
†

0.592
†

GRUF 0.072
†

0.723
†

0.571
†

0.571
†

0.723
†

0.178
†

0.443
†

0.377
†

0.558
†

0.733
†

MRN 0.068 0.682 0.509 0.509 0.682 0.155 0.392 0.326 0.490 0.671

TMRN 0.073 (+1.4%) 0.730 (+1.0%) 0.603 (+5.6%) 0.603 (+5.6%) 0.730 (+1.0%) 0.186 (+4.5%) 0.455 (+2.7%) 0.405 (+7.4%) 0.602 (+7.9%) 0.745 (+1.6%)

JD

BPR 0.038
†

0.379
†

0.231
†

0.231
†

0.379
†

0.053
†

0.134
†

0.106
†

0.207
†

0.316
†

NCF 0.047
†

0.470
†

0.333
†

0.333
†

0.470
†

0.058
†

0.146
†

0.126
†

0.211
†

0.366
†

FM 0.049
†

0.487
†

0.262
†

0.262
†

0.487
†

0.087
†

0.211
†

0.144
†

0.248
†

0.503
†

FPMC 0.056
†

0.561
†

0.327
†

0.327
†

0.561
†

0.074
†

0.160
†

0.126
†

0.289
†

0.466
†

TF 0.059
†

0.592
†

0.347
†

0.347
†

0.592
†

0.114
†

0.279
†

0.189
†

0.326
†

0.612
†

RUM 0.063
†

0.632
†

0.478
†

0.478
†

0.632
†

0.144
†

0.310
†

0.268
†

0.528
†

0.686
†

GRU 0.071
†

0.710
†

0.368
†

0.368
†

0.710
†

0.131
†

0.292
†

0.236
†

0.491
†

0.702
†

GRUF 0.071
†

0.707
†

0.491
†

0.491
†

0.707
†

0.154
†

0.327
†

0.273
†

0.533
†

0.736
†

MRN 0.071 0.708 0.508 0.508 0.708 0.166 0.337 0.291 0.579 0.750

TMRN 0.073 (+2.8%) 0.732 (+3.5%) 0.528 (+7.5%) 0.528 (+7.5%) 0.732 (+3.5%) 0.173 (+12.3%) 0.358 (+9.5%) 0.306 (+12.1%) 0.589 (+10.5%) 0.778 (+5.7%)

Amazon

Music

BPR 0.034
†

0.338
†

0.147
†

0.147
†

0.338
†

0.053
†

0.207
†

0.120
†

0.179
†

0.375
†

NCF 0.033
†

0.326
†

0.157
†

0.157
†

0.326
†

0.054
†

0.195
†

0.130
†

0.191
†

0.370
†

FM 0.035
†

0.346
†

0.153
†

0.153
†

0.346
†

0.055
†

0.213
†

0.122
†

0.185
†

0.385
†

FPMC 0.036
†

0.357
†

0.166
†

0.166
†

0.357
†

0.055
†

0.210
†

0.127
†

0.194
†

0.382
†

TF 0.038
†

0.376
†

0.175
†

0.175
†

0.376
†

0.060
†

0.211
†

0.125
†

0.198
†

0.413
†

RUM 0.043
†

0.432
†

0.198
†

0.198
†

0.432
†

0.065
†

0.253
†

0.142
†

0.211
†

0.447
†

GRU 0.037
†

0.373
†

0.171
†

0.171
†

0.373
†

0.054
†

0.206
†

0.116
†

0.179
†

0.376
†

GRUF 0.043
†

0.432
†

0.204
†

0.204
†

0.432
†

0.068
†

0.257
†

0.151
†

0.230
†

0.459
†

MRN 0.045 0.447 0.204 0.204 0.447 0.069 0.264 0.145 0.218 0.462

TMRN 0.045 (+4.7%) 0.451 (+4.4%) 0.210 (+2.9%) 0.210 (+2.9%) 0.451 (+4.4%) 0.070 (+2.9%) 0.265 (+3.1%) 0.152 (+0.7%) 0.233 (+1.3%) 0.470 (+2.4%)

We compare our proposed model TMRN with all the baselines.

Our base architecture MRN is the pre-trained GRU neural net-

work [13] integrated with the multi-hop reasoning mechanism.

We find that MRN, the simplification of TMRN, outperforms all

the other methods except GRUF . This is because GRUF utilizes

auxiliary features. With hierarchical knowledge, it is clear to see

that TMRN outperforms the other methods consistently, including

GRUF and MRN. We conclude that multi-hop reasoning is more

capable of learning users’ preference for sequential recommenda-

tion, and with the incorporation of hierarchical knowledge, TMRN

yields a larger performance improvement.

6.2 Model Analysis

In this section, we perform a series of detailed analysis for our pro-

posed model for further verifying the effectiveness and robustness.

6.2.1 Varying the depth of hops. In our reasoning network, the

depth of hops is an important parameter for learning user prefer-

ence. Next, we study the effect of the depth of hops on sequential

recommendation. We select the best baseline GRUF as a reference.

We only present the performance comparisons on Last.fm dataset,

since the other results are similar and omitted here. Table 3 shows

the performance change by varying the depth of reasoning. Note

that for a fair comparison, we also vary the features used in GRUF :

it only takes the same categorial information that is available to

TMRN at each comparison. As shown in Table 3, we find that TMRN

outperforms GRUF consistently. Compared with GRUF , TMRN

yields an increase of about 5.0% ∼ 5.6% in the next-item recommen-

dation task and 6.6% ∼ 8.5% in the multi-item recommendation

task by varying the number of hops. The results obtained from

both MRN and TMRN improves with the increasing of the depth

of hops, which indicates the effectiveness of multi-hop reasoning.

Another observation is when we use more categorical information,

the performance also improves.

Table 3:MAPperformancewith the increasing depth of hops

in TMRN on Last.fm dataset.

Methods

Next-Item Multi-item

1-hop 2-hop 3-hop 1-hop 2-hop 3-hop

GRUF 0.525 0.552 0.571 0.332 0.355 0.377

MRN 0.494 0.502 0.509 0.314 0.321 0.326

TMRN 0.551 0.583 0.603 0.354 0.385 0.405

6.2.2 Varying the amount of training data. TMRN contains more

parameters to learn and theoretically has a higher model complexity

than baselines. We study the performance sensitivity of our models

by varying the amount of training data. We take 20%, 40%, 60% and

80% from the complete training data to generate four new training

sets, respectively. The test set is fixed as original. In Figure 3, we

can see that TMRN performs better than GRUF consistently with

four different training sets. Compared with GRUF Although the

model complexity of TMRN is higher, we take several effective

techniques to enhance the model learning, e.g., pretraining the item
and category embeddings. Furthermore, our reasoning architecture

is aligned with external taxonomy data. It effectively utilizes the

Session 9: Recommendation WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia

579



Session 9: Recommendation WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia

580



REFERENCES

[1] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly

learning to align and translate. CoRR, abs/1409.0473, 2014.
[2] X. Chen, H. Xu, Y. Zhang, J. Tang, Y. Cao, Z. Qin, and H. Zha. Sequential

recommendation with user memory networks. InWSDM, pages 108–116, 2018.

[3] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio. On the properties

of neural machine translation: Encoder-decoder approaches. In EMNLP, pages
103–111, 2014.

[4] E. Constantinides. Influencing the online consumer’s behavior: the web experi-

ence. Internet research, 14(2):111–126, 2004.
[5] T. Donkers, B. Loepp, and J. Ziegler. Sequential user-based recurrent neural

network recommendations. In RecSys, pages 152–160, 2017.
[6] J. Gao, T. Zhang, and C. Xu. A unified personalized video recommendation via

dynamic recurrent neural networks. In ACM MM, pages 127–135, 2017.

[7] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. CoRR,
abs/1410.5401, 2014.

[8] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwinska,

S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, A. P. Badia, K. M.

Hermann, Y. Zwols, G. Ostrovski, A. Cain, H. King, C. Summerfield, P. Blunsom,

K. Kavukcuoglu, and D. Hassabis. Hybrid computing using a neural network

with dynamic external memory. Nature, 538(7626):471–476, 2016.
[9] R. He and J. Mcauley. Ups and downs: Modeling the visual evolution of fashion

trends with one-class collaborative filtering. InWWW, pages 507–517, 2016.

[10] R. He, W. Kang, and J. McAuley. Translation-based recommendation. In RecSys,
pages 161–169, 2017.

[11] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua. Neural collaborative filtering.

In WWW, pages 173–182, 2017.

[12] J. L. Herlocker, J. A. Konstan, and J. Riedl. Explaining collaborative filtering

recommendations. In CSCW, pages 241–250, 2000.

[13] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. Session-based recommenda-

tions with recurrent neural networks. CoRR, abs/1511.06939, 2015.
[14] B. Hidasi, M. Quadrana, A. Karatzoglou, and D. Tikk. Parallel recurrent neural

network architectures for feature-rich session-based recommendations. In RecSys,
pages 241–248, 2016.

[15] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997.

[16] J. Huang, W. X. Zhao, H. Dou, J.-R. Wen, and E. Y. Chang. Improving sequential

recommendation with knowledge-enhanced memory networks. In SIGIR, pages
505–514, 2018.

[17] G. H"ubl and V. Trifts. Consumer decision making in online shopping environ-

ments: The effects of interactive decision aids. Marketing Science, 19(1):4–21, Jan.
2000.

[18] B. Kanagal, A. Ahmed, S. Pandey, V. Josifovski, J. Yuan, and L. G. Pueyo. Super-

charging recommender systems using taxonomies for learning user purchase

behavior. PVLDB, 5(10):956–967, 2012.
[19] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-

mender systems. Computer, 42(8):30–37, 2009.
[20] T. Kurashima, T. Althoff, and J. Leskovec. Modeling interdependent and periodic

real-world action sequences. In Proceedings of the 2018WorldWideWeb Conference
on World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018, pages 803–812,
2018.

[21] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma. Neural attentive session-based

recommendation. In CIKM, pages 1419–1428, 2017.

[22] P. Li, Z. Wang, Z. Ren, L. Bing, and W. Lam. Neural rating regression with

abstractive tips generation for recommendation. In SIGIR, pages 345–354. ACM,

2017.

[23] F. Liu and J. Perez. Gated end-to-end memory networks. In EACL, pages 1–10,
2017.

[24] Q. Liu, S. Wu, D. Wang, Z. Li, and L. Wang. Context-aware sequential recom-

mendation. In ICDM, pages 1053–1058, 2016.

[25] A. K. Menon, K. P. Chitrapura, S. Garg, D. Agarwal, and N. Kota. Response

prediction using collaborative filtering with hierarchies and side-information. In

SIGKDD, pages 141–149, 2011.
[26] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word

representations in vector space. CoRR, abs/1301.3781, 2013.

[27] A. H. Miller, A. Fisch, J. Dodge, A. Karimi, A. Bordes, and J. Weston. Key-value

memory networks for directly reading documents. In EMNLP, pages 1400–1409,
2016.

[28] A. Mnih. Taxonomy-informed latent factor models for implicit feedback. In KDD
Cup, pages 169–181, 2012.

[29] M. Quadrana, A. Karatzoglou, B. Hidasi, and P. Cremonesi. Personalizing session-

based recommendations with hierarchical recurrent neural networks. In RecSys,
pages 130–137, 2017.

[30] Z. Ren, S. Liang, P. Li, S. Wang, and M. de Rijke. Social collaborative viewpoint

regression with explainable recommendations. In WSDM, pages 485–494. ACM,

2017.

[31] S. Rendle. Factorization machines with libfm. ACM TIST, 3(3):57:1–57:22, 2012.
[32] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian

personalized ranking from implicit feedback. In UAI, pages 452–461, 2009.
[33] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Factorizing personalized

markov chains for next-basket recommendation. InWWW, 2010.

[34] M. Schedl. The lfm-1b dataset for music retrieval and recommendation. In ICMR,
pages 103–110, 2016.

[35] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus. End-to-end memory networks.

In NIPS, pages 2440–2448, 2015.
[36] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. LINE: large-scale

information network embedding. InWWW, pages 1067–1077, 2015.

[37] N. Tintarev and J. Masthoff. A survey of explanations in recommender systems.

In ICDE, pages 801–810, 2007.
[38] K. Verbert, N. Manouselis, X. Ochoa, M. Wolpers, H. Drachsler, I. Bosnic, and

E. Duval. Context-aware recommender systems for learning: A survey and future

challenges. TLT, 5(4):318–335, 2012.
[39] J. Wang, W. X. Zhao, Y. He, and X. Li. Leveraging product adopter information

from online reviews for product recommendation. In ICWSM, pages 464–472,

2015.

[40] P. Wang, J. Guo, Y. Lan, J. Xu, S. Wan, and X. Cheng. Learning hierarchical

representation model for nextbasket recommendation. In SIGIR, pages 403–412,
2015.

[41] X. Wang, X. He, F. Feng, L. Nie, and T. Chua. TEM: tree-enhanced embedding

model for explainable recommendation. In Proceedings of the 2018 World Wide
Web Conference on World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018,
pages 1543–1552, 2018.

[42] Z. Wang, Z. Jiang, Z. Ren, J. Tang, and D. Yin. A path-constrained framework

for discriminating substitutable and complementary products in e-commerce. In

WSDM, pages 619–627. ACM, 2018.

[43] L. Weng, Y. Xu, Y. Li, and R. Nayak. Exploiting item taxonomy for solving

cold-start problem in recommendation making. In IEEE, pages 113–120, 2008.
[44] J. Weston, S. Chopra, and A. Bordes. Memory networks. Eprint Arxiv, 2014.
[45] C. Y. Wu, A. Ahmed, A. Beutel, H. Jing, and H. Jing. Recurrent recommender

networks. InWSDM, pages 495–503, 2017.

[46] F. Yu, Q. Liu, S. Wu, L. Wang, and T. Tan. A dynamic recurrent model for next

basket recommendation. In SIGIR, pages 729–732, 2016.
[47] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma. Collaborative knowledge base

embedding for recommender systems. In SIGKDD, pages 353–362, 2016.
[48] Y. Zhang, A. Ahmed, V. Josifovski, and A. J. Smola. Taxonomy discovery for

personalized recommendation. InWSDM, pages 243–252, 2014.

[49] Y. Zhang, G. Lai, M. Zhang, Y. Zhang, Y. Liu, and S. Ma. Explicit factor models

for explainable recommendation based on phrase-level sentiment analysis. In

SIGIR, pages 83–92, 2014.
[50] W. X. Zhao, Y. Guo, Y. He, H. Jiang, Y. Wu, and X. Li. We know what you want to

buy: a demographic-based system for product recommendation on microblogs.

In KDD, pages 1935–1944, 2014.
[51] W. X. Zhao, S. Li, Y. He, E. Y. Chang, J. Wen, and X. Li. Connecting social

media to e-commerce: Cold-start product recommendation using microblogging

information. TKDE, 28(5):1147–1159, 2016.
[52] W. X. Zhao, G. He, H. Dou, J. Huang, S. Ouyang, and J. Wen. Kb4rec: A dataset

for linking knowledge bases with recommender systems. CoRR, abs/1807.11141,
2018.

[53] C. Ziegler, G. Lausen, and L. Schmidt-Thieme. Taxonomy-driven computation of

product recommendations. In CIKM, pages 406–415, 2004.

Session 9: Recommendation WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia

581


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Problem Formulation
	3.2 GRU-based Sequential Recommender

	4 Method
	4.1 Overview
	4.2 The General Multi-hop Reasoning Architecture
	4.3 Utilizing Taxonomy Data for Instructing the Reasoning Mechanism
	4.4 Sequential Recommendation

	5 Experimental Setup
	5.1 Datasets
	5.2 Task Settings
	5.3 Comparisons
	5.4 Evaluation Metrics and Parameter Settings

	6 Results and Analysis
	6.1 Overall Performance
	6.2 Model Analysis
	6.3 Case Study

	7 Conclusions
	References



