To develop a knowledge-aware recommender system, a key issue is how to obtain rich and structured knowledge base (KB) information for recommender system (RS) items. Existing data sets or methods either use side information from original RSs (containing very few kinds of useful information) or utilize a private KB. In this paper, we present KB4Rec v1.0, a data set linking KB information for RSs. It has linked three widely used RS data sets with two popular KBs, namely Freebase and YAGO. Based on our linked data set, we first preform qualitative analysis experiments, and then we discuss the effect of two important factors (i.e., popularity and recency) on whether a RS item can be linked to a KB entity. Finally, we compare several knowledge-aware recommendation algorithms on our linked data set.