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ABSTRACT
Methods for reinforcement learning for recommendation (RL4Rec)
have been gaining a substantial amount of attention, as they can
optimize long-term user engagement. To avoid expensive online
interactions with actual users, offline RL4Rec has been proposed
to optimize methods based on logged user interactions. The eval-
uation of offline RL4Rec methods solely depends on the overall
performance of the resulting recommendations, and thus may in-
accurately reflect true performance. We study the evaluation of
offline RL4Rec methods from a repetition-and-exploration perspec-
tive, where we separately evaluate and compare the performance
of recommending relevant repeat items (i.e., items that a user has
previously interacted with) and exploratory items (i.e., items that
the user has not interacted with so far). Our experimental results
reveal a significant disparity between repetition performance and
exploration performance of RL4Rec methods. Furthermore, we find
that the consideration of future gains sensitively affects the op-
timization of RL4Rec methods. Our findings regarding repetition
performance and exploration performance provide valuable insights
for the future evaluation and optimization of RL4Rec methods.

CCS CONCEPTS
• Information systems→ Recommender systems; Retrieval
models and ranking.

KEYWORDS
Recommender Systems; Reinforcement Learning for Recommenda-
tions; Evaluation

ACM Reference Format:
Ming Li, Jin Huang, and Maarten de Rijke. 2023. Repetition and Exploration
in Offline Reinforcement Learning-based Recommendations. In Proceedings
of Workshop on Deep Reinforcement Learning for Information Retrieval at
CIKM’23 (DRL4IR@CIKM). ACM, New York, NY, USA, 7 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DRL4IR@CIKM, October 22, 2023, Birmingham, UK
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
RL4Rec is increasingly attracting attention, in both academia and
industry, due to its capacity to optimize long-term user engage-
ment [1, 24, 45]. The goal of RL4Rec is to optimize a policy that
can receive maximum cumulative reward over multiple sequential
recommendations. Due to the disadvantages of deploying RL4Rec
online, e.g., it is time-consuming and hurts the user experience [14,
17, 22], offline RL4Rec, which includes offline learning and offline
evaluation, is a more practical alternative. Offline RL4Rec methods
base their learning and evaluation only on logged user interactions
and do not require interactions with users [25, 37, 45, 46]. As a
result, offline RL4Rec exhibits much higher stability and computa-
tional efficiency than online RL4Rec, despite the fact that offline
RL4Rec has the potential for sub-optimality [3, 10].

Evaluating RL4Rec is crucial for ensuring that recommendations
are accurate, valuable, and adaptable to user needs [25, 29, 37, 40, 45,
46]. The commonly used evaluation strategy is to evaluate the av-
erage performance of all recommendations generated by a RL4Rec
method [25, 37, 45, 46]. This overall evaluation approach ignores the
distinction between different user interaction patterns and may re-
sult in poor performance in recommending certain items, e.g., those
that the user never interacted with. Ekstrand et al. [9] argue that
the evaluation of recommendation methods should consider the
distribution of utility between and within different user groups to
more deeply understand recommendation performance. We expect
that the current evaluation of RL4Rec methods that solely relies
on overall performance is misleading and may lead to a decline in
performance when confronting actual users. Hence, there is a real
need to evaluate RL4Recs from different perspectives, not just in
terms of overall performance.

Previous work has found important differences between user in-
teractions that concern so-called repeat items, i.e., items that a user
has previously interacted with, and those that concern so-called
exploratory items, i.e., items that a user has not interacted with so
far [11, 19–21]. Li et al. [21] have found that there are significant
disparities between repetition performance (i.e., the performance of
recommending repeat items) and exploration performance in (i.e.,
the performance of recommending exploratory items) when evalu-
ating sequential recommendation methods in real-world datasets.
Recommending repeat items proves to be considerably easier and
yields markedly higher accuracy than recommending exploratory
items. So far, a systematic comparison of repetition performance
and exploration performance has not been performed for RL4Rec.
We believe it is important to perform such a comparison as it could
shed light on how RL4Rec handles the challenges associated with
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repetition and exploration, thereby contributing to a more com-
prehensive understanding of its capabilities and limitations in real-
world scenarios.

In this paper, we address this knowledge gap and provide a com-
prehensive experimental performance analysis of RL4Rec methods
from the perspective of repetition and exploration. Our experimen-
tal results reveal that: (i) there is a huge imbalance between the
repetition performance and exploration performance of RL4Rec
methods; and (ii) the task of recommending items to users who
will next purchase a repeat item is much easier than the task of rec-
ommending items to users who will next purchase an exploratory
item. This indicates that relying solely on overall accuracy has its
limitations in terms of accurately reflecting true performance.

Besides the evaluation of RL4Rec methods, we also expect the
optimization of RL4Rec methods to be affected by different user in-
teractions that concern repeat items and exploratory items, as they
are learned from such interactions. Specifically, we investigate how
a RL4Rec method is affected by the degree to which future rewards
(i.e., long-term reward) are considered, during its optimization with
these interactions. Our experimental results suggest that placing
greater emphasis on long-term reward results in an increase in the
novelty in both repetition and exploratory recommendation tasks,
albeit with a decrease in accuracy.

2 RELATEDWORK
2.1 RL4Rec and its evaluation
Various reinforcement learning (RL) methods, including Deep Q-
Network (DQN), REINFORCE, and actor-critic, are being used in
RL4Rec methods to improve recommender systems (RSs), e.g., op-
timizing long-term user engagement. Among those, DQN is the
most widely used RL method, and the resulting DQN-based rec-
ommendation (DQN4Rec) methods have been widely applied in
a variety of recommendation scenarios, e.g., e-commerce product
recommendation [41], tip recommendation [6], news recommen-
dation [44], and recommendation mixed with advertisements [43].
Different from DQN, which is a value-based method and estimates
Q-values to find the best actions, REINFORCE is a policy gradi-
ent method that directly optimizes the recommendation policy
for improved performance [31]. It is commonly used in conversa-
tional RSs [30] and explainable RSs [35]. Actor-critic is a hybrid
RL approach that combines the elements of both value-based and
policy gradient methods, allowing it to benefit from both compo-
nents [23]. Actor-critic-based recommendation methods are able
to handle large action spaces in RSs [8] and have been used for
diverse recommendation tasks [40, 42].

The evaluation of RL4Rec methods primarily focuses solely on
the overall performance of the resulting recommendations gener-
ated by these methods, which may inaccurately reflect their true
performance.

2.2 Evaluation of RS
Over the years, a lot of effort has been put into the evaluation
of RS using different metrics, e.g., accuracy, diversity [36], nov-
elty [12, 15], fairness [2, 33, 34], allocation of item exposure [21].
Among them, accuracy is one of the most important evaluation
metrics in recommender systems, as it represents the ability to

find relevant items that meet user preferences, which is the default
focus of RS. Several empirical studies investigated the accuracy eval-
uation from different aspects, e.g., reproducibility [13], versions
of implementations [28], dataset splitting methods [38]. However,
these studies mainly focus on the overall average accuracy, which
fails to assess how a model performs at a more fine-grained level.
Recently, Li et al. [20] proposed a set of evaluation metrics to eval-
uate the next-basket recommendation (NBR) performance from the
perspective of repetition and exploration. They uncover an imbal-
ance between repetition performance and exploration performance.
They argue that using average accuracy is not sufficient to evaluate
the recommendation performance, as it may suffer from several
issues, e.g., long-tail contribution of performance, unfairness across
different users, etc. Following this study, the perspective of repeti-
tion and exploration in evaluation has gotten increasing attention,
and the distinction between repetition and exploration has been
found in more recommendation scenarios, e.g., sequential item
recommendation [21], reverse next period recommendation [19],
and conversational recommendation [11]. Recently, Ekstrand et al.
[9] emphasized that understanding the fine-grained metric dis-
tributions is important to provide an appropriate evaluation of
recommender systems.

However, the evaluation from the repetition and exploration
perspective has not been investigated for RL4Rec methods, which
is the gap this paper addresses.

3 PRELIMINARIES
3.1 Offline DQN4Rec
We focus on a recommendation task in which items from the item
set I are recommended to users from the user set U [29]. We
follow the common RL4Rec setting where the recommendation
task is modelled as a Markov decision process (MDP) [4, 5, 13, 14]:
State space S: A state 𝐼𝑢 stores historical item sequence of user
𝑢 ∈ U, denoted as 𝐼𝑢 = [𝑖1, 𝑖2, . . . , 𝑖𝑡 ] with item 𝑖𝑡 ∈ I that the
user interacted at timestamp 𝑡 .

Action space A: An action is to recommend an item 𝑖𝑡+1 to user
𝑢 by the RS method based on state 𝐼𝑢 .

Reward R: The immediate reward 𝑟 (𝐼𝑢 , 𝑖𝑡+1) is the user’s feedback
𝑟𝑢,𝑖𝑡+1 ∈ [0, 1]. If the user clicks the recommended item 𝑖𝑡+1,
𝑟𝑢,𝑖𝑡+1 = 1, otherwise, 𝑟𝑢,𝑖𝑡+1 = 0.

Transition probability P: After the user provides feedback 𝑟𝑢,𝑖𝑡+1 ,
the state transitions deterministically to the next state 𝐼 ′𝑢 =

[𝑖1, 𝑖2, . . . , 𝑖𝑡+1].
Discount factor 𝛾 : 𝛾 ∈ [0, 1] governs the significance that the RS

method attaches to future rewards: if 𝛾 = 0, only the immediate
reward is considered; if 𝛾 = 1, all future rewards are equally
considered.

Offline DQN4Rec methods are only learned from logged user data
D, without further interactions with users. Following Huang et al.
[13], we implement a DQN4Rec method that consists of two com-
ponents: a state encoder to predict state-action function 𝑄 (𝐼𝑢 , 𝑖;\ )
and a DQNmethod to optimize the expected discounted cumulative
reward.
The state encoder component. Neural networksM, e.g., trans-
formers [32] or gated recurrent units (GRUs) [7], are widely used
in state encoders to encode a state into a dense representation
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𝒑𝑢 [13, 26]. The state-action value function 𝑄 (𝐼𝑢 , 𝑖) is computed
as the dot-product of the state representation 𝒑𝑢 and the item
representation 𝒒𝑖 :

𝑄 (𝐼𝑢 , 𝑖) = 𝒑⊤𝑢 · 𝒒𝑖 ; 𝒑𝑢 =M(𝐼𝑢 ;\ ), (1)

where \ denotes the parameters of state representation modelM.
The generated 𝑄 (𝐼𝑢 , 𝑖) is applied in the following DQN component.
The DQN component. DQN implements a behavior network that
is separated from the target network to ensure the stability of
the training process. These networks have the same structure but
are updated in different ways. In the DQN4Rec method that we
implement, two networks are two state encoders that have the
same structure and use the same item embeddings, but use different
parameters of modelM.

Given a transition (𝐼𝑢 , 𝑖𝑡+1, 𝑟𝑢,𝑖𝑡+1 , 𝐼 ′𝑢 ) ∈ D, we use the behavior
network to estimate a state-action value function 𝑄 (𝐼𝑢 , 𝑖𝑡+1;\ ) on
state-action pairs (𝐼𝑢 , 𝑖𝑡+1), where \ denotes the parameters of the
behavior network; and we use the target network to estimate a
state-action value function 𝑄 ′ (𝐼 ′𝑢 , 𝑖;\ ′) for any item 𝑖 ∈ I given
state 𝐼 ′𝑢 , where \ ′ denotes the parameters of the behavior network.
The parameter \ in the behavior network is updated by minimizing
the following loss using the Adam optimizer [16]:

L =
1
D

∑︁
(𝐼𝑢 ,𝑖𝑡+1,𝑟𝑢,𝑖𝑡+1 ,𝐼 ′𝑢 ) ∈D

𝛿TD,

𝛿TD =

(
𝑟𝑢,𝑖𝑡+1 + 𝛾 max

𝑖
𝑄 ′ (𝐼 ′𝑢 , 𝑖;\ ′) −𝑄 (𝐼𝑢 , 𝑖𝑡+1;\ )

)2
.

(2)

Following Lillicrap et al. [23], the parameter \ ′ in the target network
is updated by:

\ ′ ← 𝜏\ + (1 − 𝜏)\ ′, (3)

where 𝜏 controls the rate at which the target network is updated
with the parameter of the behavior network and is set to 0.01 [40].

3.2 Evaluation
3.2.1 Repetition and exploration. Following Li et al. [21], for each
user 𝑢, we divide items into repeat items 𝑖 ∈ 𝐼𝑢 (i.e., items that user
𝑢 has interacted with before) and explore items 𝑖 ∈ 𝐼𝑢 = I \ 𝐼𝑢 (i.e.,
items that user 𝑢 has not interacted with before). Then, given the
next item that users will purchase, we can divide users into the
following two types:

(i) Repeat-next users (RNU): Users who will purchase a repeat
item in their subsequent step; and

(ii) Explore-next users (ENU): Users who will purchase an ex-
plore (new) item in their subsequent step.

3.2.2 Metrics. Following Li et al. [21], we adopt twowidely used ac-
curacymetrics for the sequential recommendation task, i.e.,Recall@𝐾 ,
and NDCG@𝐾 , which focus on measuring how accurate the rec-
ommendations are. Recall@𝐾 measures the proportion of relevant
items recommended within the top-𝐾 items. NDCG additionally
considers the position of relevant items in the recommendation list.

Apart from these accuracy-related metrics, we also measure the
novelty of the recommendation, which is defined as follows:

Novelty𝑢@𝐾 =

∑
𝑟 = 1𝐾ℎ(𝑢, 𝑟 ) · log2 (𝑟 + 1)∑𝐾

𝑟=1 log2 (𝑟 + 1)
(4)

Table 1: Statistics of the processed datasets. RNU denotes
repeat-next users; ENU denotes explore-next users. The ENU
proportion can be computed as 1 − RNU proportion.

Dataset #Items #Users #RNU #ENU RNU proportion

Diginetica 35,042 75,739 22,610 53,129 38.1%
Yoochoose 30,833 1,878,967 715,518 1,163,449 29.8%

where ℎ(𝑢, 𝑟 ) = 1 if the 𝑟 -th item in the recommended list to user 𝑢
is a new item, otherwise ℎ(𝑢, 𝑟 ) = 0. Explore-next users expect the
recommendation with a high novelty, as they are inclined to buy
new items in their subsequent purchase, while repeat-next users
exhibit a contrary tendency. Note that the positions of the items in
the recommendation list are also considered to measure the novelty.

In our analysis below, Metric@𝐾 denotes the overall average per-
formance on the givenmetric; andMetric𝑟𝑒𝑝@𝐾 andMetric𝑒𝑥𝑝𝑙@𝐾
denote the repetition performance on repeat-next users and explo-
ration performance on explore-next users, respectively.

4 EXPERIMENTS
4.1 Research questions
In this study, we address the following research questions:
(RQ1) How do RL4Rec methods perform from the repetition and

exploration perspective?
(RQ2) How are RL4Rec methods affected by the degree to which

long-term reward is considered during its optimization?

4.2 Experimental set up
4.2.1 Dataset. Following [21], we use twowidely used datasets, i.e.,
Diginetica and Yoochoose, with different proportions of repeat-next
users to support our analysis.
Diginetica is a CIKM2016 dataset, which contains e-commerce
search sessions with unique session ids. We regard each session as
the historical interaction of a user.1
Yoochoose is a RecSys2015 dataset, which is a collection of users’
sequential click events from a retailer.2

We adhere to the preprocessing approach employed in prior
research, denoted as the “5-core” method. Items with fewer than
5 occurrences and users with interaction sequences shorter than
5 items are excluded. The user sequence length cap is set to 50,
with sequences exceeding this length being truncated. To split the
dataset into training, validation, and test partitions, we adopt a
leave-one-out method: for every sequence, the ultimate interaction
is the test label, the second-to-last interaction is the validation label,
and the third-to-last interaction is the training label. A summary
of the preprocessed datasets can be found in Table 1.

4.2.2 State encoder for DQN4Rec. As we have explained in Sec-
tion 3.1, the DQN4Rec methods that we use in our experiments
can be integrated with different neural networks. Specifically, we
apply a transformer [32] and a GRU [7] to construct the state en-
coder for DQN4Rec, resulting in two DQN4Rec methods, i.e., DQN-
Transformer and DQN-GRU, respectively.

1https://competitions.codalab.org/competitions/11161
2https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015

https://competitions.codalab.org/competitions/11161
https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
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Figure 1: Recommendation accuracy for all users, repeat-next users and explore-next users on the Diginetica (top) and Yoochoose
(bottom) datasets.

4.2.3 Configuration. We implement DQN-Transformer and DQN-
GRU based on RecBole [39] using Pytorch [27]. We tune the hyper-
parameters per DQN4Rec method through a grid search in the fol-
lowing range: the number of negative samples for each positive sam-
ple is searched from {1, 5, 10, 20, 50}, the embedding size is searched
from {32, 64, 128}, and the 𝛾 is searched from {0, 0.1, 0.2, . . . , 1.0}. 𝜏
is set to 0.01 according to [40]. The dropout ratio is set to 0.1 and the
Adam optimizer [32] with a learning rate of 0.001 is employed to op-
timize the parameters. For the state encoder of DQN-Transformer,
we use 2 transformer layers with 8 heads. For the state encoder of
DQN-GRU, we set the number of GRU layers as 1. We train each
model using a 12G TITAN X GPU and each experiment is repeated
5 times to make results more reliable. We will share our source code
upon publication of this paper.

4.3 Experimental results
4.3.1 Evaluation: repetition vs. exploration. To answer RQ1, we
analyze the overall performance on all users. We also analyze the
fine-grained performance for repeat-next users and explore-next
users separately.
Accuracy. The accuracy results are displayed in Figure 1. For all
the accuracy-related metrics, the higher the value the better the
performance. Several observations can be made based on Figure 1:
(1) DQN4Rec methods with different state encoders have different

performance across various metrics. DQN-Transformer outper-
forms DQN-GRU w.r.t. overall accuracy on both datasets.

(2) Both DQN-Transformer and DQN-GRU suffer from the huge
accuracy imbalance between repetition and exploration on both
datasets. Both DQN4Rec methods achieve noticeably better
recommendation accuracy for repeat-next users in comparison
to explore-next users across various accuracy metrics. This

Table 2: The novelty of the recommendation for repeat-next
users and explore-next users. The results are averages of 5
independent runs.

Dataset Method Novelty@1 Novelty@3

RNU ENU RNU ENU

Diginetica DQN-Transformer 0.189 0.222 0.548 0.582
DQN-GRU 0.277 0.326 0.526 0.546

Yoochoose DQN-Transformer 0.190 0.224 0.541 0.582
DQN-GRU 0.357 0.492 0.556 0.626

suggests that RL4Rec methods have unfair performance w.r.t.
different types of users.

(3) Compared to DQN-GRU, DQN-Transformer achieves better
overall Recall@1, but worse Recall𝑒𝑥𝑝𝑙@1, which accounts for
over 70% of the user population on the Yoochoose dataset. This
reveals that higher overall average performance does not nec-
essarily translate into better performance across users.

The above observations suggest that repeat-next users contribute a
significant portion of the overall average performance, although
they constitute a relatively small proportion of the user population
compared to explore-next users. The overall average accuracy is
not sufficient to represent the performance of the RL4Rec methods,
for example, optimizing methods based only on repetition could be
a “shortcut” to get a good overall performance [11, 18–21].
Novelty. In general, lower novelty signifies better outcomes for
repeat-next users, as it suggests that more repeat items are recom-
mended. Conversely, higher novelty is preferable for explore-next
users, as it means that more explore items are recommended. The
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Figure 2: The accuracy (top) and novelty performance (bottom) for all users (Overall), repeat-next users (RNU) and explore-next
users (ENU) with 𝛾 varying from 0 to 1 on the Diginetica dataset.
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Figure 3: Accuracy (top) and novelty performance (bottom) for all users (Overall), repeat-next users (RNU) and explore-next
users (ENU) with 𝛾 varying from 0 to 1 on the Yoochoose dataset.

novelty results for all users and different user sub-groups are shown
in Table 2. We have the following observations:
(1) DQN4Rec with different state encoders have varying levels of

novelty of the recommendation. For both repeat-next users
and explore-next users, the novelty of recommendations gener-
ated by DQN-GRU is higher than those from DQN-Transformer
when 𝐾 = 1. This indicates that compared to DQN-Transformer,
DQN-GRU favors the explore-next users w.r.t. the types of rec-
ommended items.

(2) On both datasets, the novelty of DQN-Transformer and DQN-
GRU recommendations for explore-next users is consistently
higher than for repeat-next users, however, their difference is
relatively smaller w.r.t. Novelty@3, which indicates that both
methods may have difficulty in classifying the repetition and
exploration preferences of users.

The aforementioned findings indicate that the DQN4Rec meth-
ods with different state encoders favor different user groups (i.e.,
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repeat-next users and explore-next users). The overall average nov-
elty is insufficient to represent the novelty performance of RL4Rec
methods, as different types of users expect different novelty of the
recommendation.

On both evaluation metrics, the RL4Rec methods perform sig-
nificantly differently on repeat-next users and explore-next users.
This highlights the importance of evaluating RL4Rec methods from
the perspective of repetition and exploration.

4.3.2 Optimization: long-term vs. short-term. To answer RQ2, we in-
vestigate the influence of the optimization process on the repetition
and exploration performance. Specifically, we conduct experiments
with a varying discount factor 𝛾 , which controls the balance be-
tween immediate and future rewards in the model’s optimization
process. A higher value of 𝛾 places more importance on long-term
rewards, encouraging the model to consider potential future bene-
fits. Conversely, a lower value of 𝛾 emphasizes short-term rewards,
making the model focus more on immediate gains. Similarly, we an-
alyze this impact on the conventional overall performance, as well
as the performances from the repetition and exploration perspec-
tive. Due to space limitations, we only showcase the NDCG@3 and
Novelty@3 as the accuracy metric and novelty metric, respectively.
The experimental results for Diginetica and Yoochoose are shown
in Figure 2 and Figure 3, respectively. We have several observations,
as follows:
• On both datasets for both DQN-Transformer and DQN-GRU, as
the value of𝛾 increases (i.e., as we place more importance on long-
term rewards during the optimization process), the novelty of
recommendation increases. One possible reason for these results
is that, when the optimization focuses more on the short-term
reward, the DQN model is more biased to learn the “repeat short-
cut” [11, 18] to minimize the loss, which leads to recommended
more repeat items (i.e., low novelty).
• As 𝛾 and novelty increase, the overall accuracy and repetition
accuracy decrease. This observation is not surprising, as the
model recommends more new items, (i.e., being biased to the
relatively difficult task), which will result in low overall accu-
racy and repetition accuracy. Interestingly, we find that, as the
recommendation novelty increases for explore-next users, the
exploration performance does not increase, which indicates that
emphasizing long-term reward does not necessarily improve the
model’s accuracy performance on explore-next users.
• Compared to DQN-GRU, DQN-Transformer has better perfor-
mance w.r.t. the accuracy in most cases when the optimization
focuses more on the short-term reward, i.e., 𝛾 < 0.3 on Diginetica
dataset and 𝛾 ≤ 0.5 on Yoochoose dataset. When the value of 𝛾 is
large, both methods exhibit low accuracy, and in some cases, they
may even encounter a collapse in the optimization. Additionally,
in comparison to DQN-GRU, the DQN-Transformer approach dis-
plays higher instability and a greater susceptibility to collapsing.
We suspect that using a transformer as state encoder exhibits a
better ability to capture the item relations in a dynamic setting,
however, due to its complexity, it is susceptible to collapse when
optimization places excessive emphasis on long-term rewards.

The above findings indicate that the optimization of DQN4Rec
methods in a scenario with a mix of interactions concerning repeat
items and exploratory items is very sensitive to the discount factor

that controls the trade-off between the long-term and short-term
rewards.

5 CONCLUSION
In this paper, we have investigated the evaluation of offline RL4Rec
methods from the perspective of repetition and exploration. Our
experimental results on two real-world datasets exhibit a huge
imbalance between repetition performance and exploration perfor-
mance of the DQN4Rec methods that we considered. Specifically,
these methods achieve much higher accuracy on repeat-next users
than on explore-next users. This suggests that an evaluation that
solely relies on the overall performance is insufficient to represent
the performance of methods. Instead, a fine-grained evaluation that
considers repetition and exploration could enhance the evaluation.

Furthermore, we investigated how the discount factor that con-
trols the long-term and short-term reward trade-offs affects the
performance of DQN4Rec methods from the repetition and explo-
ration perspective. We find that emphasizing the long-term reward
leads to an increase in recommendation novelty, but might lead
to a decrease in accuracy in the scenario with both repetition and
exploration interactions.

Our research expands on the optimization and evaluation of
existing RL4Rec methods from the perspective of repetition and
exploration, thus providing valuable insights into the directions of
improving RL4Rec methods. Future work could improve RL4Rec
methods by considering the perspective of repetition and explorato-
rion, e.g., designing a reward function for RL4Rec that is able to
distinguish between repetition and exploration.
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